Variation on Strongly Lacunary delta Ward Continuity in 2-normed Spaces

dc.contributor.authorErsan, Sibel
dc.date.accessioned2024-07-12T21:40:03Z
dc.date.available2024-07-12T21:40:03Z
dc.date.issued2020en_US
dc.department[Belirlenecek]en_US
dc.description.abstractA sequence (x(k)) of points in a subset E of a 2-normed space X is called strongly lacunary delta-quasi-Cauchy, or N-theta-delta-quasi-Cauchy if (Delta x(k)) is N-theta-convergent to 0, that is lim(r ->infinity) 1/h(r) Sigma(k is an element of Ir) parallel to Delta(2) x(k), z parallel to = 0 for every fixed z is an element of X. A function defined on a subset E of X is called strongly lacunary delta-ward continuous if it preserves N-theta-delta-quasi-Cauchy sequences, i.e. (f(x(k))) is an N-theta-delta-quasi-Cauchy sequence whenever (x(k)) is. In this study we obtain some theorems related to strongly lacunary delta-quasi-Cauchy sequences.en_US
dc.identifier.doi10.5269/bspm.v38i7.45496
dc.identifier.endpage202en_US
dc.identifier.issn0037-8712
dc.identifier.issn2175-1188
dc.identifier.issue7en_US
dc.identifier.startpage195en_US
dc.identifier.urihttps://doi.org/10.5269/bspm.v38i7.45496
dc.identifier.urihttps://hdl.handle.net/20.500.12415/7119
dc.identifier.volume38en_US
dc.identifier.wosWOS:000496299300015en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Science
dc.language.isoenen_US
dc.publisherSoc Paranaense Matematicaen_US
dc.relation.ispartofBoletim Sociedade Paranaense De Matematicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKY04870
dc.subjectStrongly Lacunary Ward Continuityen_US
dc.subjectQuasi-Cauchy Sequencesen_US
dc.subjectContinuityen_US
dc.subject2-Normed Spaceen_US
dc.titleVariation on Strongly Lacunary delta Ward Continuity in 2-normed Spacesen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar