Facial expression recognition using deep learning

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

t. Facial expression recognition has become an increasingly important area of research in recent years. Neural networkbased methods have made amazing progress in performing recognition-based tasks, winning competitions set up by various data science communities, and achieving high performance on many datasets. Miscellaneous regularization methods have been utilized by various researchers to help combat over-fitting, to reduce training time, and to generalize their models. In this paper, by applying the Haar Cascade classifier to crop faces and focus on the region of interest, we hypothesize that we would attain a fast convergence without using the whole image to analyze facial expressions. We also apply label smoothing and analyze its effect on the databases of CK+, KDEF, and RAF. The ResNet model has been employed as an example of a neural network model. Label smoothing has demonstrated an improvement of the recognition accuracy up to 0.5% considering CK+ and the KDEF databases. While the application of Haar Cascade has shown to decrease the achieved accuracy on KDEF and RAF databases with a small margin, fast convergence of the model has been observed.

Açıklama

Anahtar Kelimeler

Deep learning, Emotion, Facial expression, Haar cascade, Label smoothing, Recognition

Kaynak

Fourth International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Shehu, H. A., Sharif, Md. H. ve Uyaver, S. (2021). Facial expression recognition using deep learning. Fourth International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-5.