Numerical solutions of hyperbolic equations with the nonlocal integral condition
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
In present paper joint with Prof. Dr. A. Ashyralyev, the mixed boundary value problem for the multi-dimensional hyperbolic equation, is considered. Here ? is the unit open cube in the m-dimensional Euclidean space Rm {x = (x1, · · ·, xm) : 0 < xj < 1, 1 ? j ? m} with boundary S, ? = ? ? S, ar(x) (x ? ?), ?(x), ?(x) (x ? ?) and f(t, x) (t ? (0, 1), x ? ?) are given smooth functions and ar(x) ? a > 0 . A numerical method is proposed for solving multidimentional hyperbolic partial differential equations with nonlocal integral condition. The first and second orders of occuracy stable difference schemes are presented. The stability of these difference schemes are established. The method is illustrated by numerical examples.
Açıklama
Anahtar Kelimeler
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Ağgez, N. (2009). Numerical solutions of hyperbolic equations with the nonlocal integral condition. Maltepe Üniversitesi. s. 302.