Numerical solutions of hyperbolic equations with the nonlocal integral condition

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In present paper joint with Prof. Dr. A. Ashyralyev, the mixed boundary value problem for the multi-dimensional hyperbolic equation, is considered. Here ? is the unit open cube in the m-dimensional Euclidean space Rm {x = (x1, · · ·, xm) : 0 < xj < 1, 1 ? j ? m} with boundary S, ? = ? ? S, ar(x) (x ? ?), ?(x), ?(x) (x ? ?) and f(t, x) (t ? (0, 1), x ? ?) are given smooth functions and ar(x) ? a > 0 . A numerical method is proposed for solving multidimentional hyperbolic partial differential equations with nonlocal integral condition. The first and second orders of occuracy stable difference schemes are presented. The stability of these difference schemes are established. The method is illustrated by numerical examples.

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Ağgez, N. (2009). Numerical solutions of hyperbolic equations with the nonlocal integral condition. Maltepe Üniversitesi. s. 302.