On computing the eigenvectors of structured matrices

dc.contributor.authorKodal Sevindir, Hülya
dc.date.accessioned2024-07-12T20:50:20Z
dc.date.available2024-07-12T20:50:20Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractA numerical method for computing the eigenvectors of symmetric tridiagonal matrices is studied in this paper. This method can easily be adapted for other classes of matrices, e.g. semiseparable matrices, as long as a step of the QR method requires O(n) floating point operations. A real symmetric matrix of order n has a full set of orthogonal eigenvectors. The most used approach to compute the spectrum of such matrices reduces first the dense symmetric matrix into a symmetric structured one, i.e., tridiagonal matrices or semiseparable matrices. This step is accomplished in O(n 3 ) operations. Once the latter symmetric structured matrix is available, its spectrum is computed in an iterative fashion by means of the QR method in O(n 2 ) operations. In principle, the whole set of eigenvectors of the latter structured matrix can be computed by means of inverse iteration in O(n 2 ) operations.en_US
dc.identifier.citationKodal Sevindir, H. (2009). On computing the eigenvectors of structured matrices. Maltepe Üniversitesi. s. 201.en_US
dc.identifier.endpage202en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage201en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2320
dc.institutionauthorKodal Sevindir, Hülya
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07685
dc.titleOn computing the eigenvectors of structured matricesen_US
dc.typeConference Object
dspace.entity.typePublication

Files