A new note on asymmetric metric spaces

dc.contributor.authorInce, Dagci, F.
dc.contributor.authorMisirlioglu, T.
dc.contributor.authorAkalli, H.Ç.
dc.contributor.authorKo?inac, L.D.R.
dc.date.accessioned2024-07-12T21:40:48Z
dc.date.available2024-07-12T21:40:48Z
dc.date.issued2023en_US
dc.department[Belirlenecek]en_US
dc.description6th International Conference of Mathematical Sciences, ICMS 2022 -- 20 July 2022 through 24 July 2022 -- -- 193514en_US
dc.description.abstractIf the classical metric axioms on a set X are changed by disregarding the case that d(x, y)=0 implies x=y, the general properties for metric spaces will easily be extended. In this case d is called a pseudo-metric. Neverthless, if the necessity of the symmetry of d is disregarded, the proper extensions of metric consequences are not evident at all. A pseudo-asymmetric on a non-empty set X is a non-negative real-valued function p on X×X such that for x, y, z?X we have p(x, x)=0 and p(x, y)?p(x, z)+p(z, y). If p satisfies the additional condition that p(x, y)=0 implies x=y, then p is an asymmetric metric on X. A set with an asymmetric metric is called an asymmetric space. Since symmetry necessity is not satisfied, there are two kinds of open balls, namely forward balls and backward balls. As a result, there are two kinds of topological notions. Here we give some theorems related to convergence of sequences of functions and forward and backward total boundedness on asymmetric spaces. © 2023 AIP Publishing LLC.en_US
dc.identifier.doi10.1063/5.0175842
dc.identifier.isbn9.78074E+12
dc.identifier.issn0094-243X
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85177639233en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1063/5.0175842
dc.identifier.urihttps://hdl.handle.net/20.500.12415/7472
dc.identifier.volume2879en_US
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.relation.ispartofAIP Conference Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKY08816
dc.subjectAsymmetricen_US
dc.subjectBackward Convergence.en_US
dc.subjectForward Convergenceen_US
dc.titleA new note on asymmetric metric spacesen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar