Conditions for the pringsheim convergence of double sequences that are deferred cesàro summable
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
For a given real or complex valued double sequence (umn), its deferred Cesaro means are defined by ` D(11) mn (u) = 1 (?m ? ?m)(qn ? pn) ?m j=?m+1 qn k=pn+1 ujk (1) where (pn), (qn), (?m) and (?m) are the sequences of non-negative integers satisfying pn < qn, ?m < ?m and limn qn = ?, limm ?m = ?. We say that (umn) is deferred Cesaro summable (briefly ( ` DC, 1, 1) summable) to if (1) tends to as m, n ? ?. Note that, if pn = 0, qn = n and ?m = 0, ?m = m, then corresponding (DC, 1, 1) method is the well known Cesaro summability ( ` C, 1, 1). In this extended abstract we give inverse conditions to obtain Pringsheim convergence of deferred Cesaro summable double ` sequences. We also give an inclusion relation with example.
Açıklama
Anahtar Kelimeler
Deferred Cesaro means, double sequences, convergence in Pringsheim’s sense, inverse conditions, inclusion relations
Kaynak
Fourth International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Sezer, S. A. (2021). Conditions for the pringsheim convergence of double sequences that are deferred cesàro summable. Fourth International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-3.