Conditions for the pringsheim convergence of double sequences that are deferred cesàro summable

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

For a given real or complex valued double sequence (umn), its deferred Cesaro means are defined by ` D(11) mn (u) = 1 (?m ? ?m)(qn ? pn) ?m j=?m+1 qn k=pn+1 ujk (1) where (pn), (qn), (?m) and (?m) are the sequences of non-negative integers satisfying pn < qn, ?m < ?m and limn qn = ?, limm ?m = ?. We say that (umn) is deferred Cesaro summable (briefly ( ` DC, 1, 1) summable) to if (1) tends to as m, n ? ?. Note that, if pn = 0, qn = n and ?m = 0, ?m = m, then corresponding (DC, 1, 1) method is the well known Cesaro summability ( ` C, 1, 1). In this extended abstract we give inverse conditions to obtain Pringsheim convergence of deferred Cesaro summable double ` sequences. We also give an inclusion relation with example.

Açıklama

Anahtar Kelimeler

Deferred Cesaro means, double sequences, convergence in Pringsheim’s sense, inverse conditions, inclusion relations

Kaynak

Fourth International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Sezer, S. A. (2021). Conditions for the pringsheim convergence of double sequences that are deferred cesàro summable. Fourth International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-3.