Some properties in nonsmooth analysis of perturbation function in vector optimization
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
We consider in this paper the following vector optimization problem max f(x) = (f1(x), ...fk(x)) , subjectto gi(x) ? yi, i = 1, ..., m, (1) hj (x) = yj , j = m + 1, ..., p, where f : R n ? R k , each gi : R n ? R, each hj : R n ? R , the variables y ? R p are perturbations near ¯y = 0 . For each y , the set of feasible solutions is S(y) = © .x ? R n : .gi(x) ? yi, hj (x) ? yj , i = 1, ..., m, j = m + 1, ..., p.ª . We assume that the objective and constraint functions of the problem (1) are smooth. The solution concepts for (1) that we will be concerned with is the notion of an ideal maximal (or strongly efficient) point. Our main aim in this paper is to investigate some properties in nonsmooth analysis of perturbation function (or marginal function).
Açıklama
Anahtar Kelimeler
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Agamaliyev, A. ve İlter, S. (2009). Some properties in nonsmooth analysis of perturbation function in vector optimization. Maltepe Üniversitesi. s. 67.