Some properties in nonsmooth analysis of perturbation function in vector optimization

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We consider in this paper the following vector optimization problem max f(x) = (f1(x), ...fk(x)) , subjectto gi(x) ? yi, i = 1, ..., m, (1) hj (x) = yj , j = m + 1, ..., p, where f : R n ? R k , each gi : R n ? R, each hj : R n ? R , the variables y ? R p are perturbations near ¯y = 0 . For each y , the set of feasible solutions is S(y) = © .x ? R n : .gi(x) ? yi, hj (x) ? yj , i = 1, ..., m, j = m + 1, ..., p.ª . We assume that the objective and constraint functions of the problem (1) are smooth. The solution concepts for (1) that we will be concerned with is the notion of an ideal maximal (or strongly efficient) point. Our main aim in this paper is to investigate some properties in nonsmooth analysis of perturbation function (or marginal function).

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Agamaliyev, A. ve İlter, S. (2009). Some properties in nonsmooth analysis of perturbation function in vector optimization. Maltepe Üniversitesi. s. 67.