Classification of exceptional train algebras of rank 3 and type (4, 2): step 1
dc.contributor.author | Arbach, Roseli | |
dc.contributor.author | Fernandes de Oliveira, Luis Antonio | |
dc.date.accessioned | 2024-07-12T20:51:08Z | |
dc.date.available | 2024-07-12T20:51:08Z | |
dc.date.issued | 2009 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Let F be a field with char(F ) 6= 2, A a commutative F -algebra, not necessarily associative and ? : A ? F a nonzero homomorphism. If there exists ? ? F such that, for all x in A, x 3 ? (1 + ?)?(x)x 2 + ??(x) 2x = 0, then the pair (A, ?) is called a (commutative) train algebra of rank 3. When we consider 2? 6= 1, there is an idempotent e ? A and relative to this element, A has a Peirce decomposition A = F e ? Ue ? Ve, where Ue = {u ? Ker(w)N : 2eu = u} and Ve = {v ? Ker(w) : ev = ?v}. The type of A is the ordered pair of integers (1 + r, s), where r = dim(Ue) and s = dim(Ve). If A = F e ? Ue ? Ve is a train algebra of rank 3 and dimension 6, the possible types of A are (5, 1), (4, 2), (3, 3), (2, 4) and (1, 5). The train algebras of rank 3 and types (n, 1), (3, n - 2), (2, n - 1) and (1, n) had already been classified and so, in order to complete the classification of the train algebras of rank 3 and dimension 6, we have to analyse such algebras of type (4, 2). Here we begin this classification | en_US |
dc.identifier.citation | Arbach, R. ve Fernandes de Oliveira, L. A. (2009). Classification of exceptional train algebras of rank 3 and type (4, 2): step 1. s. 341. | en_US |
dc.identifier.endpage | 342 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 341 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2357 | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07722 | |
dc.title | Classification of exceptional train algebras of rank 3 and type (4, 2): step 1 | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |