Numerical approach of the nonlinear reaction-advection-diffusion equation with time-space conformable fractional derivatives
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, a numerical approach is proposed for solving one dimensional nonlinear time-space-fractional reactionadvection-diffusion equation with Dirichlet boundary conditions. The fractional derivatives are described in the conformable sense. The numerical scheme is based on shifted Chebyshev polynomials of the fourth kind. The unknown function is written as Chebyshev series with m terms. The nonlinear space fractional reaction-advection-diffusion equation is reduced to a system of nonlinear ordinary differential equations by using the properties of Chebyshev polynomials and conformable fractional calculus.The finite difference method is applied to solve this system. Finally, numerical example is presented to confirm the reliability and effectiveness of the proposed approach.