An inequality for self reciprocal polynomials
dc.contributor.author | A. Qazi, Mohammed | |
dc.date.accessioned | 2024-07-12T20:49:12Z | |
dc.date.available | 2024-07-12T20:49:12Z | |
dc.date.issued | 2019 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Let Pn be the class of all polynomials of degree at most n. Polynomials f ? Pn which satisfy the condition z nf(1/z) ? f(z) are called self-reciprocal and form the sub-class P ? n of Pn. For any ? > 0, let M?(f ; ?) := max|z|=? |f(z)| and Mp(f ; ?) := ( 1 2? ? ? ?? |f(?e i? )| p d? )1/p , 0 < p < ?. If f ? Pn then Mp(f ? ; ?) ? n?n?1 Mp(f ; 1) for any p > 0 and ? ? 1, whereas, if f ? P? n then Mp(f ? ; ?) ? (n/2)? n?1 Mp(f ; 1) for any p > 0 and ? ? 1. Lately, it has been noted that at least for p ? 1, there exists a positive number ?n strictly less than 1 such that Mp(f ? ; ?) ? n?n?1 Mp(f ; 1) for ? ? ?n if f ? Pn. By analogy, it has been asked if there was a positive number ? ? n < 1 such that Mp(f ? ; ?) ? (n/2)? n?1 Mp(f ; 1) for all ? ? ? ? n and any f ? P? n. We propose to discuss this question. | en_US |
dc.identifier.citation | A. Qazi, M. (2019). An inequality for self reciprocal polynomials. International Conference of Mathematical Sciences (ICMS 2019). s. 48. | en_US |
dc.identifier.endpage | 48 | en_US |
dc.identifier.isbn | 978-605-2124-29-1 | |
dc.identifier.startpage | 48 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2140 | |
dc.institutionauthor | A. Qazi, Mohammed | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences (ICMS 2019) | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY01504 | |
dc.subject | Polynomials | en_US |
dc.subject | Bernstein’s inequality | en_US |
dc.subject | Zygmund’s inequality | en_US |
dc.title | An inequality for self reciprocal polynomials | en_US |
dc.type | Article | |
dspace.entity.type | Publication |