Different convergences in approximation of evolution equations

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Consider the semilinear equation in Banach space E ? u 0 (t) = Au(t) + f(u(t)), t ? 0, u(0) = u 0 ? E ?, (0.1) where f(·) : E ? ? E ? E, 0 ? ? < 1, is assumed to be continuous, bounded and continuously Fr´echet differentiable function. The problem (0.1) in the neighborhood of the hyperbolic equilibrium can be written in the form, where Au? = A+f 0 (u ? ), Fu? (v(t)) = f(v(t)+u ? )?f(u ? )?f 0 (u ? )v(t). We consider approximation of (0.2) by the following scheme, with initial data Vn(0) = v 0 n. The solution of such problem is given by formula Vn(t + ?n) = (In ? ?nAu? n,n) ?1Vn(t) + ?n(In ? ?nAu? n,n) ?1Fu? n,n(Vn(t)) = = (In ? ?nAu? n,n) ?kVn(0) + ?n? k j=0(In ? ?nAu? n,n) ?(k?j+1)Fu? n,n(Vn(j?n)), t = k?n, where Vn(0) = v 0 n. We consider different kind of consistency of generators under which one can get convergence of solutions in the vicinity of hyperbolic stationary point.

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Piskarev, S. (2009). Different convergences in approximation of evolution equations. Maltepe Üniversitesi. s. 352.