Tikhonov regularization with oversmoothing penalty for linear statistical inverse learning problems

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this paper, we consider the linear ill-posed inverse problem with noisy data in the statistical learning setting. The Tikhonov regularization scheme in Hilbert scales is considered in the reproducing kernel Hilbert space framework to reconstruct the estimator from the random noisy data. We discuss the rates of convergence for the regularized solution under the prior assumptions and link condition. For regression functions with smoothness given in terms of source conditions the error bound can explicitly be established.

Açıklama

Anahtar Kelimeler

Statistical inverse problem, Tikhonov regularization, Hilbert Scales, Reproducing kernel Hilbert space, Minimax convergence rates

Kaynak

Third International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Rastogi, A. (2019). Tikhonov regularization with oversmoothing penalty for linear statistical inverse learning problems. Third International Conference of Mathematical Sciences, Maltepe Üniversitesi. s. 1-4.