Regularization schemes for statistical inverse problems

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We study a statistical inverse learning problem, where we observe the noisy image of a quantity through a operator at some random design points. We consider the regularization schemes to reconstruct the estimator of the quantity for the ill-posed inverse problem. We develop a theoretical analysis for the minimizer of the regularization scheme using the ansatz of reproducing kernel Hilbert spaces. We discuss optimal rates of convergence for the proposed scheme, uniformly over classes of admissible solutions, defined through appropriate source conditions.

Açıklama

Anahtar Kelimeler

Statistical inverse problem, Tikhonov regularization, Reproducing kernel Hilbert space, General source condition, Minimax convergence rates

Kaynak

International Conference of Mathematical Sciences (ICMS 2019)

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Rastogi, A. (2019). Regularization schemes for statistical inverse problems. International Conference of Mathematical Sciences (ICMS 2019). s. 185.