Regularization schemes for statistical inverse problems
Küçük Resim Yok
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
We study a statistical inverse learning problem, where we observe the noisy image of a quantity through a operator at some random design points. We consider the regularization schemes to reconstruct the estimator of the quantity for the ill-posed inverse problem. We develop a theoretical analysis for the minimizer of the regularization scheme using the ansatz of reproducing kernel Hilbert spaces. We discuss optimal rates of convergence for the proposed scheme, uniformly over classes of admissible solutions, defined through appropriate source conditions.
Açıklama
Anahtar Kelimeler
Statistical inverse problem, Tikhonov regularization, Reproducing kernel Hilbert space, General source condition, Minimax convergence rates
Kaynak
International Conference of Mathematical Sciences (ICMS 2019)
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Rastogi, A. (2019). Regularization schemes for statistical inverse problems. International Conference of Mathematical Sciences (ICMS 2019). s. 185.