Some results on an advanced impulsive differential equation with piecewise constant argument

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this paper, we consider the following first order advanced impulsive differential equation with piecewise constant argument x 0 (t) + a(t)x(t) + b(t)x([t + 1]) = 0 t 6= n (1) ?x(n) = dnx(n) n ? N = {0, 1, 2, ...}, (2) and the initial condition x(0) = x0 (3) where a, b : [0, ?) ? R are continuous functions, dn : N ? R , ?x(n) = x(n +) ? x(n ?), x(n +) = limt?n+ x(n), x(n ?) = limt?n? x(n), and [.] denotes the greatest integer function. Throughout this paper it is assumed that the solution x(t) is right continuous at [t], t ? [0, ?). We established the exact solution of (1)-(3) on the interval [0, ?) and we study the existence of oscillatory and periodic solutions of the same equation.

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Öğün, A., Seyhan, G. ve Bereketoğlu, H. (2009). Some results on an advanced impulsive differential equation with piecewise constant argument. Maltepe Üniversitesi. s. 113.