Some results on an advanced impulsive differential equation with piecewise constant argument
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
In this paper, we consider the following first order advanced impulsive differential equation with piecewise constant argument x 0 (t) + a(t)x(t) + b(t)x([t + 1]) = 0 t 6= n (1) ?x(n) = dnx(n) n ? N = {0, 1, 2, ...}, (2) and the initial condition x(0) = x0 (3) where a, b : [0, ?) ? R are continuous functions, dn : N ? R , ?x(n) = x(n +) ? x(n ?), x(n +) = limt?n+ x(n), x(n ?) = limt?n? x(n), and [.] denotes the greatest integer function. Throughout this paper it is assumed that the solution x(t) is right continuous at [t], t ? [0, ?). We established the exact solution of (1)-(3) on the interval [0, ?) and we study the existence of oscillatory and periodic solutions of the same equation.
Açıklama
Anahtar Kelimeler
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Öğün, A., Seyhan, G. ve Bereketoğlu, H. (2009). Some results on an advanced impulsive differential equation with piecewise constant argument. Maltepe Üniversitesi. s. 113.