Examining the impact of stemming on clustering Turkish texts

dc.authorid0000-0002-2735-7996en_US
dc.contributor.authorTunali V.
dc.contributor.authorBilgin T.T.
dc.date.accessioned2024-07-12T22:02:12Z
dc.date.available2024-07-12T22:02:12Z
dc.date.issued2012en_US
dc.departmentMaltepe Üniversitesi, Rektörlüken_US
dc.descriptionInternational Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2012 -- 2 July 2012 through 4 July 2012 -- Trabzon -- 92831en_US
dc.description.abstractPreprocessing is an important step in information retrieval and text mining. In this study, we examined the impact of stemming on clustering Turkish texts. We used two datasets compiled from web sites of Turkish news agencies, and performed extensive experiments. We empirically show that there is no significant evidence that stemming always improves the quality of clustering for texts in Turkish. However, when stemming is used, dimensionality of the document-term matrix dramatically decreases without inversely affecting the clustering performance. As a result, it is highly recommended to apply stemming for clustering Turkish texts. © 2012 IEEE.en_US
dc.identifier.doi10.1109/INISTA.2012.6246966
dc.identifier.isbn9.78147E+12
dc.identifier.scopus2-s2.0-84866634611en_US
dc.identifier.urihttps://dx.doi.org/10.1109/INISTA.2012.6246966
dc.identifier.urihttps://hdl.handle.net/20.500.12415/9114
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.relation.ispartofINISTA 2012 - International Symposium on INnovations in Intelligent SysTems and Applicationsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKY07461
dc.subjectdata miningen_US
dc.subjectdocument clusteringen_US
dc.subjectpreprocessingen_US
dc.subjectstemmingen_US
dc.subjecttext miningen_US
dc.titleExamining the impact of stemming on clustering Turkish textsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar