Necessary and sufficient tauberian conditions under which convergence follows from Ar,? summability

dc.authorid0000-0002-1754-1685en_US
dc.contributor.authorKambak, Çağla
dc.contributor.authorÇanak, İbrahim
dc.date.accessioned2024-07-12T20:49:06Z
dc.date.available2024-07-12T20:49:06Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractWe say that (xmn) is (A r,? , 1, 1) summable to l if the sequence (? r,? mn(x)) has a finite limit l. It is known that if limm,n?? xmn = l and (xmn) is bounded, then the limit limm,n?? ? r,? mn(x) = l exists. But the inverse of this implication is not true in general. Our aim is to obtain necessary and sufficient conditions for (A r,? , 1, 1) summability method under which the inverse of this implication holds. Following Tauberian theorems for (A r,? , 1, 1) summability method, we also define A r and A ? transformations of double sequences and obtain Tauberian theorems for the (A r,? , 1, 0) and (A r,? , 0, 1) summabillity methods.en_US
dc.identifier.citationKambak, Ç. ve Çanak, İ. (2019). Necessary and sufficient tauberian conditions under which convergence follows from Ar,? summability. International Conference of Mathematical Sciences (ICMS 2019). s. 66.en_US
dc.identifier.endpage66en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.startpage66en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2118
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY01481
dc.subjectPringsheim’s convergenceen_US
dc.subjectSlow decrease and slow oscillation in different sensesen_US
dc.subjectTauberian conditions and theoremsen_US
dc.titleNecessary and sufficient tauberian conditions under which convergence follows from Ar,? summabilityen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar