The algorithms of the program control construction for some classes of the dynamic systems

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this article the program control tracing algorithm is considered for some dynamic systems, which evolve on the dynamic varieties. These algorithms are based on the differential equation systems construction, which have given in advance the collection of the first integrals . The first algorithm is used the stochastic systems and the second is for the determinate systems. The main idea of these algorithms is based on the first integral of SDE system definition, given by prof. V.Doobko [1]. The program control of the stochastic system with the probability equaled to 1 Let us consider the SDE system with control: dx(t) = [P (t; x(t)) + Q(t; x(t)) · s(t; x(t))] · dt + R(t; x(t)) · dw(t), (1) where x(t) is a n-dimensional stochastic process, w(t) – is a m-dimensional standard Wiener process. The solution x(t) = x(t; 0; xo, s) of the stochastic system (1) is called a program motion if it allows to stay on the given integrated variety u(t; x(t; xo); ?) = u(0; xo) with the probability equaled to 1 for all time t at some s. This variety defines the first integrals of the equations dx(t) = A(t, x(t))dt + B(t, x(t)) dw(t) with the given initial condition x(t; xo) ¯ ¯ ¯ t=0 = xo. Thus we shall name the non-random function s = s(t; x(t)) as the program control for the dynamic stochastic system. The theory of the first integral of SDE system in the prof. Doobko’s sense [1] allows to construct the new SDE system. In this system the coefficients A and B are determined through the given dynamic variety surface for the system. This surface is invariant for the system (1) with the probability equaled to 1, and it may be considered as the first integral collections of this SDE system [2]. The congruence of the coefficients of the equations (1) and new equation make possible define the control s(t; x(t)) = (s1, . . . , sn) ? and the reaction on random effect B(t; x(t)). The continuous program control of the determinate system As a rule definition of the program control of determinate systems is considered for the discreet points only, which define the system position by the given periods of time. The specificity of our approach is that the controlled system is on the given dynamic variability at any time. We construct the class of the differential equations similar to [1] dx(t) = A(t; x(t)) dt, which have the given first integrals collection n u l (t; x) oN l=1 , N ? n. Then the program control s(t; x(t)) for system dx(t) = [P (t; x(t)) + Q(t; x(t)) · s(t; x(t))] dt is as the solution of equation A(t; x(t)) = P (t; x(t))+Q(t; x(t))·s(t; x(t)). The conditions for the matrix Q and the invariant surfaces are defined for the different dimensions control s.

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Chalykh, E. (2009). The algorithms of the program control construction for some classes of the dynamic systems. Maltepe Üniversitesi. s. 150.