A semi numerical-analytical method for solving nonlinear integro-differential equations

dc.contributor.authorShali, Jafar Ahmadi
dc.contributor.authorDarania, Parviz
dc.date.accessioned2024-07-12T20:51:13Z
dc.date.available2024-07-12T20:51:13Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, we present a new scheme based on Taylor series to convert high-order nonlinear Volterra-Fredholm integro-differential equations to a M-order linear differential equations which may be integrated using classical methods. Also, the objective of this paper is to assess both the applicability and the accuracy of linearization method in several problems of general high-order nonlinear Volterra-Fredholm integro-differential equations. This method provides piecewise linear differential equations which can be easily integrated. It is shown that the accuracy of linearization method can be substantially improved by employing variable steps which adjust themselves to the solution. Numerical examples are used to illustrate the preciseness and effectiveness of the proposed method.en_US
dc.identifier.citationShali, J. A. ve Darania, P. (2009). A semi numerical-analytical method for solving nonlinear integro-differential equations. Maltepe Üniversitesi. s. 213.en_US
dc.identifier.endpage214en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage213en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2380
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07745
dc.titleA semi numerical-analytical method for solving nonlinear integro-differential equationsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar