Domination in discrete topology graphs

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this paper we obtain a graph from the discrete topology under some conditions taken from composition of topology, study properties of that graph and the domination number of the discrete topology graph. Finally, the affection of the discrete topology graph domination parameter when a graph is modified by deleting or adding a vertex is studied in this paper. Definition 1. Let (X, ? ) be a topological space. Define the graph G? = (V, E) such that: V={u:u? ? , u?=? , X } E= {uv ? E(G? ) if u?v?= ?, u?=v and u,v ? ? }. Theorem 1. If (X, ? ) is a discrete space and X contains greater than or equal to three elements, then G? is a connected graph. Theorem 2. If (X, ? ) is a discrete space with |X| ? 3, then G? has no cut vertex. Theorem 3. If (X, ? ) is a discrete space with |X| ? 3, then ?(G? ) = 2. Theorem 4. ?(G? ? v) ? ?(G? ). Theorem 5. ?(G? ? e) = ?(G? ).

Açıklama

Anahtar Kelimeler

Discrete topology, Domination number

Kaynak

International Conference of Mathematical Sciences (ICMS 2019)

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Jabor, A. A. ve Omran, A. A. (2019). Domination in discrete topology graphs. International Conference of Mathematical Sciences (ICMS 2019). s. 13.