Domination in discrete topology graphs

dc.contributor.authorJabor, Ali Ameer
dc.contributor.authorOmran, Ahmed Abd Ali
dc.date.accessioned2024-07-12T20:47:59Z
dc.date.available2024-07-12T20:47:59Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper we obtain a graph from the discrete topology under some conditions taken from composition of topology, study properties of that graph and the domination number of the discrete topology graph. Finally, the affection of the discrete topology graph domination parameter when a graph is modified by deleting or adding a vertex is studied in this paper. Definition 1. Let (X, ? ) be a topological space. Define the graph G? = (V, E) such that: V={u:u? ? , u?=? , X } E= {uv ? E(G? ) if u?v?= ?, u?=v and u,v ? ? }. Theorem 1. If (X, ? ) is a discrete space and X contains greater than or equal to three elements, then G? is a connected graph. Theorem 2. If (X, ? ) is a discrete space with |X| ? 3, then G? has no cut vertex. Theorem 3. If (X, ? ) is a discrete space with |X| ? 3, then ?(G? ) = 2. Theorem 4. ?(G? ? v) ? ?(G? ). Theorem 5. ?(G? ? e) = ?(G? ).en_US
dc.identifier.citationJabor, A. A. ve Omran, A. A. (2019). Domination in discrete topology graphs. International Conference of Mathematical Sciences (ICMS 2019). s. 13.en_US
dc.identifier.endpage13en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.startpage13en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2072
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY01434
dc.subjectDiscrete topologyen_US
dc.subjectDomination numberen_US
dc.titleDomination in discrete topology graphsen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar