Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
In the present study, we prove that the classical sets `?(F ), c(F ), c0(F ) and `p(F ) of sequences of fuzzy numbers are normed quasilinear spaces and the ??, ??duals of the set `1(F ) is the set `?(F ). Besides this, we show that `?(F ) and c(F ) are normed quasialgebras and an operator defined by an infinite matrix belonging to the class (`?(F ) : `?(F )) is bounded and quasilinear. Finally, as an application, we characterize the class (`1(F ) : `p(F )) of infinite matrices of fuzzy numbers and establish the perfectness of the spaces `?(F ) and `1(F ).
Açıklama
Anahtar Kelimeler
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Talo, Ö ve Başar, F. (2009). Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results. Maltepe Üniversitesi. s. 316.