Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In the present study, we prove that the classical sets `?(F ), c(F ), c0(F ) and `p(F ) of sequences of fuzzy numbers are normed quasilinear spaces and the ??, ??duals of the set `1(F ) is the set `?(F ). Besides this, we show that `?(F ) and c(F ) are normed quasialgebras and an operator defined by an infinite matrix belonging to the class (`?(F ) : `?(F )) is bounded and quasilinear. Finally, as an application, we characterize the class (`1(F ) : `p(F )) of infinite matrices of fuzzy numbers and establish the perfectness of the spaces `?(F ) and `1(F ).

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Talo, Ö ve Başar, F. (2009). Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results. Maltepe Üniversitesi. s. 316.