Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results
dc.contributor.author | Talo, Özer | |
dc.contributor.author | Başar, Feyzi | |
dc.date.accessioned | 2024-07-12T20:49:50Z | |
dc.date.available | 2024-07-12T20:49:50Z | |
dc.date.issued | 2009 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | In the present study, we prove that the classical sets `?(F ), c(F ), c0(F ) and `p(F ) of sequences of fuzzy numbers are normed quasilinear spaces and the ??, ??duals of the set `1(F ) is the set `?(F ). Besides this, we show that `?(F ) and c(F ) are normed quasialgebras and an operator defined by an infinite matrix belonging to the class (`?(F ) : `?(F )) is bounded and quasilinear. Finally, as an application, we characterize the class (`1(F ) : `p(F )) of infinite matrices of fuzzy numbers and establish the perfectness of the spaces `?(F ) and `1(F ). | en_US |
dc.identifier.citation | Talo, Ö ve Başar, F. (2009). Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results. Maltepe Üniversitesi. s. 316. | en_US |
dc.identifier.endpage | 317 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 316 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2243 | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07570 | |
dc.title | Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |