Cessation time approach incorporating parametric and non-parametric machine-learning algorithms for recovery test data
dc.contributor.author | Şahin, A. Ufuk | |
dc.contributor.author | Çiftçi, Emin | |
dc.date.accessioned | 2024-07-12T21:40:19Z | |
dc.date.available | 2024-07-12T21:40:19Z | |
dc.date.issued | 2023 | en_US |
dc.department | [Belirlenecek] | en_US |
dc.description.abstract | In this study we propose a new method called the cessation time approach (CTA) for interpreting recovery tests in confined aquifers, which is based on the Theis solution. The CTA method involves selecting a residual drawdown measurement from the recovery phase and linking it to its dimensionless counterpart through simple algebraic steps. This approach is then incorporated with a regression model to estimate aquifer parameters. The performance of several parametric polynomial and non-parametric machine learning regression models was investigated using various datasets. Results show that CTA with third-order multivariable polynomials produced highly accurate parameter estimates with a normalized root mean squared error (NRMSE) within 0.5% for a field dataset. Among the machine learning algorithms tested, the radial basis function and Gaussian process regression achieved the highest accuracy with NRMSEs of 0.6%. We conclude that CTA can be a viable interpretation tool for recovery tests due to its accuracy and simplicity. | en_US |
dc.identifier.doi | 10.1080/02626667.2023.2230202 | |
dc.identifier.endpage | 1590 | en_US |
dc.identifier.issn | 0262-6667 | |
dc.identifier.issn | 2150-3435 | |
dc.identifier.issue | 11 | en_US |
dc.identifier.scopus | 2-s2.0-85165197076 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 1578 | en_US |
dc.identifier.uri | https://doi.org/10.1080/02626667.2023.2230202 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/7246 | |
dc.identifier.volume | 68 | en_US |
dc.identifier.wos | WOS:001027585300001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.ispartof | Hydrological Sciences Journal | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | KY05202 | |
dc.subject | Aquifer Analysis | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Non-Parametric Algorithms | en_US |
dc.subject | Parameter Estimation | en_US |
dc.subject | Recovery Test | en_US |
dc.subject | > | en_US |
dc.title | Cessation time approach incorporating parametric and non-parametric machine-learning algorithms for recovery test data | en_US |
dc.type | Article | |
dspace.entity.type | Publication |