Biconservative surfaces with constant mean curvature in lorentzian space forms
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form L4(delta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {L}}<^>4(\delta )$$\end{document} with constant sectional curvature delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. We obtain some local classifications of biconservative CMC surfaces in L4(delta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {L}}<^>4(\delta )$$\end{document}. Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.
Açıklama
Anahtar Kelimeler
Biconservative Surfaces, Constant Mean Curvature, Lorentzian Space Forms, Quasi-Minimal Surfaces, De Sitter Space
Kaynak
Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg
WoS Q Değeri
N/A
Scopus Q Değeri
Q4