Biconservative surfaces with constant mean curvature in lorentzian space forms

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Heidelberg

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form L4(delta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {L}}<^>4(\delta )$$\end{document} with constant sectional curvature delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. We obtain some local classifications of biconservative CMC surfaces in L4(delta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {L}}<^>4(\delta )$$\end{document}. Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.

Açıklama

Anahtar Kelimeler

Biconservative Surfaces, Constant Mean Curvature, Lorentzian Space Forms, Quasi-Minimal Surfaces, De Sitter Space

Kaynak

Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg

WoS Q Değeri

N/A

Scopus Q Değeri

Q4

Cilt

Sayı

Künye