On Delta-quasi-slowly oscillating sequences

Küçük Resim Yok

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

PERGAMON-ELSEVIER SCIENCE LTD

Erişim Hakkı

info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

A sequence (x(n)) of points in a topological group is called Delta-quasi-slowly oscillating if (Delta x(n)) is quasi-slowly oscillating, and is called quasi-slowly oscillating if (Delta x(n)) is slowly oscillating. A function f defined on a subset of a topological group is quasi-slowly (respectively, Delta-quasi-slowly) oscillating continuous if it preserves quasislowly (respectively, Delta-quasi-slowly) oscillating sequences, i.e. (f (x(n))) is quasi-slowly (respectively, Delta-quasi-slowly) oscillating whenever (x(n)) is. We study these kinds of continuities, and investigate relations with statistical continuity, lacunary statistical continuity, and some other types of continuities in metrizable topological groups. (C) 2011 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Quasi-slowly oscillating sequences, Summability, Continuity

Kaynak

COMPUTERS & MATHEMATICS WITH APPLICATIONS

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

62

Sayı

9

Künye