General weyl-heisenberg frames
dc.contributor.author | Banaei, Shahram | |
dc.contributor.author | Aghapouramin, Vahid | |
dc.date.accessioned | 2024-07-12T20:51:51Z | |
dc.date.available | 2024-07-12T20:51:51Z | |
dc.date.issued | 2009 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Every function f ? L 2 (R) can be written as an infinite linear combination of translates and modulates versions of the fixed function g ? L 2 (R)as Weyl-Heisenberg (W-H)frames (EmbTnag)m,n?Z = (e 2?imb(0)g(0 ? na))m,n?Z . For a sharp signal f we needed many coefficients of W-H frames to reconstruction f as a superposition of translation and modulation. Now in the present paper we introduce the general W-H frame as the translates, dilation and modulates versions of the fixed function g ? L 2 (R). We find sufficient condition for (EmbDkcTnag)m,k,n?Z to be a frame for L 2 (R). | en_US |
dc.identifier.citation | Banaei, S. ve Aghapouramin, V. (2009). General weyl-heisenberg frames. Maltepe Üniversitesi. s. 363. | en_US |
dc.identifier.endpage | 364 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 363 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2485 | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07850 | |
dc.title | General weyl-heisenberg frames | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |