Statistically quasi Cauchy sequences in abstract metric spaces

dc.authoridCakalli, Hüseyin/0000-0001-7344-5826en_US
dc.contributor.authorSönmez, Ayşe
dc.contributor.authorCakalli, Hüseyin
dc.date.accessioned2024-07-12T21:40:36Z
dc.date.available2024-07-12T21:40:36Z
dc.date.issued2019en_US
dc.department[Belirlenecek]en_US
dc.description3rd International Conference of Mathematical Sciences (ICMS) -- SEP 04-08, 2019 -- Maltepe Univ, Istanbul, TURKEYen_US
dc.description.abstractIn this extended abstract, we introduce a concept of statistically quasi-Cauchyness of a sequence in X in the sense that a sequence (x(k)) is statistically quasi -Cauchy in X if lim(n ->infinity) 1/n vertical bar{k <= n : d(x(k+1), x(k)) - c is an element of P}vertical bar for each c is an element of P where (X, d) is a cone metric space, and p denotes interior of a cone P of X. It turns out that a function f from a totally bounded subset A of X into X is uniformly continuous if f preserves statistically quasi-Cauchy sequences.en_US
dc.identifier.doi10.1063/1.5136136
dc.identifier.isbn978-0-7354-1930-8
dc.identifier.issn0094-243X
dc.identifier.scopus2-s2.0-85076672589en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1063/1.5136136
dc.identifier.urihttps://hdl.handle.net/20.500.12415/7371
dc.identifier.volume2183en_US
dc.identifier.wosWOS:000505225800035en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.publisherAmer Inst Physicsen_US
dc.relation.ispartofThird International Conference of Mathematical Sciences (Icms 2019)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKY08712
dc.subjectSequencesen_US
dc.subjectSeriesen_US
dc.subjectCone Metricen_US
dc.subjectCompactnessen_US
dc.subjectContinuityen_US
dc.titleStatistically quasi Cauchy sequences in abstract metric spacesen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar