A variation on arithmetic continuity
dc.authorid | 0000-0001-7344-5826 | en_US |
dc.contributor.author | Cakalli, Huseyin | |
dc.date.accessioned | 2024-07-12T21:45:17Z | |
dc.date.available | 2024-07-12T21:45:17Z | |
dc.date.issued | 2017 | en_US |
dc.department | Maltepe Üniversitesi | en_US |
dc.description.abstract | A sequence (x(k)) of points R, the set of real numbers, is called arithmetically convergent if for each epsilon > 0 there is an lat for every integer m, we have vertical bar x(m) - x(<m,n>)vertical bar < epsilon, where k vertical bar n means that k divides n or n is a multiple of k, and the symbol < m, n > denotes the greatest common divisor of the integers m and n. We prove that a subset of R is bounded if and only if it is arithmetically compact, where a subset E of R is arithmetically compact if any sequence of point in E has an arithmetically convergent subsequence. It turns out that the set of arithmetically continuous functions on an arithmetically compact subset of R coincides with the set of uniformly continuous functions where a function f defined on a subset E of lit is arithmetically continuous if it preserves arithmetically convergent sequences, i.e., (f (x(n)) is arithmetically convergent whenever (x(n)) is an arithmetic convergent sequence of points in E. | en_US |
dc.identifier.doi | 10.5269/bspm.v35i3.29640 | |
dc.identifier.endpage | 202 | en_US |
dc.identifier.issn | 0037-8712 | |
dc.identifier.issn | 2175-1188 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85010445005 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 195 | en_US |
dc.identifier.uri | https://dx.doi.org/10.5269/bspm.v35i3.29640 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/7819 | |
dc.identifier.volume | 35 | en_US |
dc.identifier.wos | WOS:000410613600013 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Cakalli, Huseyin | |
dc.language.iso | en | en_US |
dc.publisher | SOC PARANAENSE MATEMATICA | en_US |
dc.relation.ispartof | BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.snmz | KY00443 | |
dc.subject | arithmetical convergent sequences | en_US |
dc.subject | boundedness | en_US |
dc.subject | uniform continuity | en_US |
dc.title | A variation on arithmetic continuity | en_US |
dc.type | Article | |
dspace.entity.type | Publication |