Numerical approximation of dirichlet problem in bounded domains and applications

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We consider numerical approximation of Dirichlet problem for the Laplace equation in a domain D ? R d , that is we will consider the problem of finding a C 2 function. Using probabilistic methods we can give explicit reprezentation of solution of Dirichlet problem u(z) = E z f(B?D ) , where Bt is a Brownian motion starting at B0 = z, E z denotes the expectation of function in B?D , and ?D = inf{t ? 0, Bt ?/ D} is the exit time of Brownian motion from D. We give a Mathematical implementation of function u(z) for different choices of f and domain D (half-plane, unit disc, rectangle, triangle) and we apply it to obtain some numerical results.

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Rachieru, O. (2009). Numerical approximation of dirichlet problem in bounded domains and applications. Maltepe Üniversitesi. s. 310.