Numerical approximation of dirichlet problem in bounded domains and applications

dc.contributor.authorRachieru, Oana
dc.date.accessioned2024-07-12T20:55:54Z
dc.date.available2024-07-12T20:55:54Z
dc.date.issued2009en_US
dc.departmentMaltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesien_US
dc.description.abstractWe consider numerical approximation of Dirichlet problem for the Laplace equation in a domain D ? R d , that is we will consider the problem of finding a C 2 function. Using probabilistic methods we can give explicit reprezentation of solution of Dirichlet problem u(z) = E z f(B?D ) , where Bt is a Brownian motion starting at B0 = z, E z denotes the expectation of function in B?D , and ?D = inf{t ? 0, Bt ?/ D} is the exit time of Brownian motion from D. We give a Mathematical implementation of function u(z) for different choices of f and domain D (half-plane, unit disc, rectangle, triangle) and we apply it to obtain some numerical results.en_US
dc.identifier.citationRachieru, O. (2009). Numerical approximation of dirichlet problem in bounded domains and applications. Maltepe Üniversitesi. s. 310.en_US
dc.identifier.endpage311en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage310en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2910
dc.institutionauthorRachieru, Oana
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07529
dc.titleNumerical approximation of dirichlet problem in bounded domains and applicationsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar