Numerical approximation of dirichlet problem in bounded domains and applications
dc.contributor.author | Rachieru, Oana | |
dc.date.accessioned | 2024-07-12T20:55:54Z | |
dc.date.available | 2024-07-12T20:55:54Z | |
dc.date.issued | 2009 | en_US |
dc.department | Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi | en_US |
dc.description.abstract | We consider numerical approximation of Dirichlet problem for the Laplace equation in a domain D ? R d , that is we will consider the problem of finding a C 2 function. Using probabilistic methods we can give explicit reprezentation of solution of Dirichlet problem u(z) = E z f(B?D ) , where Bt is a Brownian motion starting at B0 = z, E z denotes the expectation of function in B?D , and ?D = inf{t ? 0, Bt ?/ D} is the exit time of Brownian motion from D. We give a Mathematical implementation of function u(z) for different choices of f and domain D (half-plane, unit disc, rectangle, triangle) and we apply it to obtain some numerical results. | en_US |
dc.identifier.citation | Rachieru, O. (2009). Numerical approximation of dirichlet problem in bounded domains and applications. Maltepe Üniversitesi. s. 310. | en_US |
dc.identifier.endpage | 311 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 310 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2910 | |
dc.institutionauthor | Rachieru, Oana | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07529 | |
dc.title | Numerical approximation of dirichlet problem in bounded domains and applications | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |