Stability, bifurcations and non-linear eigenvalue problems in physics

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

A major number of physics problems related to the study of the stability of solutions of differential equations can be interpreted as nonlinear eigenvalue problems. In this study we offer an effective numerical method for solving such problems. This method is based on the continuous analog of Newton’s method. The linearized equations occurring at every iteration are solved using a spline-collocation scheme. Concrete examples of applying the method to various physical problems are demonstrated.

Açıklama

Anahtar Kelimeler

Stability, Bifurcations, Newton method, Josephson junctions

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Bayadjiev, T. L. (2009). Stability, bifurcations and non-linear eigenvalue problems in physics. Maltepe Üniversitesi. s. 373.