Stability, bifurcations and non-linear eigenvalue problems in physics

dc.contributor.authorBayadjiev, Todor L.
dc.date.accessioned2024-07-12T20:50:19Z
dc.date.available2024-07-12T20:50:19Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractA major number of physics problems related to the study of the stability of solutions of differential equations can be interpreted as nonlinear eigenvalue problems. In this study we offer an effective numerical method for solving such problems. This method is based on the continuous analog of Newton’s method. The linearized equations occurring at every iteration are solved using a spline-collocation scheme. Concrete examples of applying the method to various physical problems are demonstrated.en_US
dc.identifier.citationBayadjiev, T. L. (2009). Stability, bifurcations and non-linear eigenvalue problems in physics. Maltepe Üniversitesi. s. 373.en_US
dc.identifier.endpage374en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage373en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2312
dc.institutionauthorBayadjiev, Todor L.
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07639
dc.subjectStabilityen_US
dc.subjectBifurcationsen_US
dc.subjectNewton methoden_US
dc.subjectJosephson junctionsen_US
dc.titleStability, bifurcations and non-linear eigenvalue problems in physicsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar