A variation on Abel quasi Cauchy sequences
dc.authorid | 0000-0001-7344-5826 | en_US |
dc.contributor.author | Cakalli, Huseyin | |
dc.contributor.editor | Ashyralyev, A; Malkowsky, E; Lukashov, A; Basar, F | |
dc.date.accessioned | 2024-07-12T21:59:28Z | |
dc.date.available | 2024-07-12T21:59:28Z | |
dc.date.issued | 2015 | en_US |
dc.department | Maltepe Üniversitesi, Rektörlük | en_US |
dc.description | International Conference on Advancements in Mathematical Sciences (AMS) -- NOV 05-07, 2015 -- Antalya, TURKEY | en_US |
dc.description.abstract | In this paper, we introduce and investigate the concept of Abel ward continuity. A real function f is Abel ward continuous if it preserves Abel quasi Cauchy sequences, where a sequence (P-k) of point in R is called Abel quasi-Cauchy if the series Sigma(k=0) (infinity) Delta pk.x(k) is convergent for 0 < x <= 1 and limx_q- (1 X) Er 0 A pk.xk = 0, where Apk = Pk+1 pk for every non negative integer k. Some other types of continuities are also studied and interesting results are obtained. It turns out that uniform limit of a sequence of Abel ward continuous functions is Abel ward continuous and the set of Abel ward continuous functions is a closed subset of the set of continuous functions. | en_US |
dc.description.sponsorship | Fatih Univ, Badji Mokhtar Annaba Univ, Inst Math & Math Modeling | en_US |
dc.identifier.doi | 10.1063/1.4930448 | |
dc.identifier.isbn | 978-0-7354-1323-8 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.scopus | 2-s2.0-84984539722 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://dx.doi.org/10.1063/1.4930448 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/8950 | |
dc.identifier.volume | 1676 | en_US |
dc.identifier.wos | WOS:000371818700022 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Cakalli, Huseyin | |
dc.language.iso | en | en_US |
dc.publisher | AMER INST PHYSICS | en_US |
dc.relation.ispartof | ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015) | en_US |
dc.relation.isversionof | AIP Conference Proceedings | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | KY05994 | |
dc.subject | Abel | en_US |
dc.subject | Borel and power series methods | en_US |
dc.subject | Convergence and divergence of series and sequences | en_US |
dc.subject | Continuity and related questions | en_US |
dc.title | A variation on Abel quasi Cauchy sequences | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |