Hereditary orders in the quotient ring of a skew polynomial ring
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
Let K be a field, and let ? be an automorphism of K of finite order, say n. One can form a skew polynomial ring K[X, ?] over K with the usual rules of multiplication defined by the commutation rule: Xa = ?(a)X ? a ? K. Let K(X, ?) denote the skew field of quotients of K[X, ?]. If F is the fixed field of ?, then K(X, ?) is a cyclic algebra of degree n with center F (Xn). If V is a valuation ring of F (Xn) containing F , and S is the integral closure of V in K(Xn), then any order of K(X, ?) with center V can be written as a “crossed-product V -algebra”
Açıklama
Anahtar Kelimeler
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Kauta, J. S. (2009). Hereditary orders in the quotient ring of a skew polynomial ring. Maltepe Üniversitesi. s. 220.