Hereditary orders in the quotient ring of a skew polynomial ring

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Let K be a field, and let ? be an automorphism of K of finite order, say n. One can form a skew polynomial ring K[X, ?] over K with the usual rules of multiplication defined by the commutation rule: Xa = ?(a)X ? a ? K. Let K(X, ?) denote the skew field of quotients of K[X, ?]. If F is the fixed field of ?, then K(X, ?) is a cyclic algebra of degree n with center F (Xn). If V is a valuation ring of F (Xn) containing F , and S is the integral closure of V in K(Xn), then any order of K(X, ?) with center V can be written as a “crossed-product V -algebra”

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Kauta, J. S. (2009). Hereditary orders in the quotient ring of a skew polynomial ring. Maltepe Üniversitesi. s. 220.