Hereditary orders in the quotient ring of a skew polynomial ring
dc.contributor.author | Kauta, John S. | |
dc.date.accessioned | 2024-07-12T20:51:37Z | |
dc.date.available | 2024-07-12T20:51:37Z | |
dc.date.issued | 2009 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Let K be a field, and let ? be an automorphism of K of finite order, say n. One can form a skew polynomial ring K[X, ?] over K with the usual rules of multiplication defined by the commutation rule: Xa = ?(a)X ? a ? K. Let K(X, ?) denote the skew field of quotients of K[X, ?]. If F is the fixed field of ?, then K(X, ?) is a cyclic algebra of degree n with center F (Xn). If V is a valuation ring of F (Xn) containing F , and S is the integral closure of V in K(Xn), then any order of K(X, ?) with center V can be written as a “crossed-product V -algebra” | en_US |
dc.identifier.citation | Kauta, J. S. (2009). Hereditary orders in the quotient ring of a skew polynomial ring. Maltepe Üniversitesi. s. 220. | en_US |
dc.identifier.endpage | 221 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 220 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2436 | |
dc.institutionauthor | Kauta, John S. | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07801 | |
dc.title | Hereditary orders in the quotient ring of a skew polynomial ring | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |