Hereditary orders in the quotient ring of a skew polynomial ring

dc.contributor.authorKauta, John S.
dc.date.accessioned2024-07-12T20:51:37Z
dc.date.available2024-07-12T20:51:37Z
dc.date.issued2009en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractLet K be a field, and let ? be an automorphism of K of finite order, say n. One can form a skew polynomial ring K[X, ?] over K with the usual rules of multiplication defined by the commutation rule: Xa = ?(a)X ? a ? K. Let K(X, ?) denote the skew field of quotients of K[X, ?]. If F is the fixed field of ?, then K(X, ?) is a cyclic algebra of degree n with center F (Xn). If V is a valuation ring of F (Xn) containing F , and S is the integral closure of V in K(Xn), then any order of K(X, ?) with center V can be written as a “crossed-product V -algebra”en_US
dc.identifier.citationKauta, J. S. (2009). Hereditary orders in the quotient ring of a skew polynomial ring. Maltepe Üniversitesi. s. 220.en_US
dc.identifier.endpage221en_US
dc.identifier.isbn9.78605E+12
dc.identifier.startpage220en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2436
dc.institutionauthorKauta, John S.
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciencesen_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY07801
dc.titleHereditary orders in the quotient ring of a skew polynomial ringen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar