A New Variation on Statistically Quasi Cauchy Sequences

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

AMER INST PHYSICS

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

A sequence (alpha(k)) of real numbers is called lambda-statistically upward quasi-Cauchy if for every epsilon > 0 lim(n ->infinity 1/)lambda(n)vertical bar{k is an element of I-n : alpha(k) - alpha(k+1) >= epsilon}vertical bar = 0, where (lambda(n)) is a non-decreasing sequence of positive numbers tending to so such that lambda(n+1) <= lambda(n) +1, lambda(l) = 1, and I-n = [n - lambda(n) + 1,n] for any positive integer n. A real valued function f defined on a subset of R, the set of real numbers is lambda-statistically upward continuous if it preserves lambda-statistical upward quasi-Cauchy sequences. It turns out that the set of lambda-statistical upward continuous is a proper subset of the set of uniformly continuous functions.

Açıklama

International Conference of Numerical Analysis and Applied Mathematics (ICNAAM) -- SEP 25-30, 2017 -- Thessaloniki, GREECE

Anahtar Kelimeler

Statistical convergence, quasi-Caudiy sequences, continuity

Kaynak

INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017)

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

1978

Sayı

Künye