On Variations of Quasi-Cauchy Sequences in Cone Metric Spaces

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

UNIV NIS, FAC SCI MATH

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

A sequence (x(n)) of points in a topological vector space valued cone metric space (X, rho) is called p-quasi-Cauchy if for each c is an element of (K) over circle there exists an n(0) is an element of N such that rho(x(n+p), x(n)) - c is an element of (K) over circle for n >= n(0), where K is a proper, closed and convex pointed cone in a topological vector space Upsilon with (K) over circle not equal empty set. We investigate p-ward continuity in topological vector space valued cone metric spaces. It turns out that p-ward continuity coincides with uniform continuity not only on a totally bounded subset but also on a connected subset of X.

Açıklama

2nd International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM) -- JUN 03-06, 2015 -- Istanbul Commerce Univ, Fac Arts & Sci, Istanbul, TURKEY

Anahtar Kelimeler

Metric spaces, metrizability, summability, convergence, continuity, cone metric, total boundedness

Kaynak

FILOMAT

WoS Q Değeri

Q2

Scopus Q Değeri

Q3

Cilt

30

Sayı

3

Künye