Statistical quasi Cauchy sequences in abstract metric spaces
Küçük Resim Yok
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
In this study, we introduce a concept of statistical quasi-Cauchyness of a sequences in a cone metric space in the sense that a sequence (xk) is statistically quasi-Cauchy if limn?? 1 n |{k ? n : d(xk+1, xk) ? c}| = 0 for each c ? P 0 . It turns out that a real valued function f is uniformly continuous either on a totally bounded subset of a cone metric space X or on a connected subset of X if f preserves statistical quasi-Cauchy sequences
Açıklama
Anahtar Kelimeler
Statistical boundedness, Statistical convergence, Lacunary sequence
Kaynak
International Conference of Mathematical Sciences (ICMS 2019)
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Sönmez, A. ve Çakallı, H. (2019). Statistical quasi Cauchy sequences in abstract metric spaces. International Conference of Mathematical Sciences (ICMS 2019). s. 34.