Statistical quasi Cauchy sequences in abstract metric spaces
dc.authorid | 0000-0001-7344-5826 | en_US |
dc.contributor.author | Sönmez, Ayşe | |
dc.contributor.author | Çakallı, Hüseyin | |
dc.date.accessioned | 2024-07-12T20:49:41Z | |
dc.date.available | 2024-07-12T20:49:41Z | |
dc.date.issued | 2019 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | In this study, we introduce a concept of statistical quasi-Cauchyness of a sequences in a cone metric space in the sense that a sequence (xk) is statistically quasi-Cauchy if limn?? 1 n |{k ? n : d(xk+1, xk) ? c}| = 0 for each c ? P 0 . It turns out that a real valued function f is uniformly continuous either on a totally bounded subset of a cone metric space X or on a connected subset of X if f preserves statistical quasi-Cauchy sequences | en_US |
dc.identifier.citation | Sönmez, A. ve Çakallı, H. (2019). Statistical quasi Cauchy sequences in abstract metric spaces. International Conference of Mathematical Sciences (ICMS 2019). s. 34. | en_US |
dc.identifier.endpage | 34 | en_US |
dc.identifier.isbn | 978-605-2124-29-1 | |
dc.identifier.startpage | 34 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2196 | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences (ICMS 2019) | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY01561 | |
dc.subject | Statistical boundedness | en_US |
dc.subject | Statistical convergence | en_US |
dc.subject | Lacunary sequence | en_US |
dc.title | Statistical quasi Cauchy sequences in abstract metric spaces | en_US |
dc.type | Article | |
dspace.entity.type | Publication |