Ideal statistically quasi Cauchy sequences
dc.authorid | 0000-0001-7344-5826 | en_US |
dc.contributor.author | Savas, Ekrem | |
dc.contributor.author | Cakalli, Huseyin | |
dc.contributor.editor | Ashyralyev, A; Lukashov, A | |
dc.date.accessioned | 2024-07-12T21:59:35Z | |
dc.date.available | 2024-07-12T21:59:35Z | |
dc.date.issued | 2016 | en_US |
dc.department | Maltepe Üniversitesi, Rektörlük | en_US |
dc.description | 3rd International Conference on Analysis and Applied Mathematics (ICAAM) -- SEP 07-10, 2016 -- Almaty, KAZAKHSTAN | en_US |
dc.description.abstract | An ideal I is a family of subsets of N, the set of positive integers which is closed under taking finite unions and subsets of its elements. A sequence (x(k)) of real numbers is said to be S(I)-statistically convergent to a real number L, if for each epsilon > 0 and for each delta > 0 the set {n is an element of N: 1/n {k <= n: vertical bar x(k) - L vertical bar >= epsilon}vertical bar >= delta} belongs to I. We introduce S(I)-statistically ward compactness of a subset of R, the set of real numbers, and S(I)-statistically ward continuity of a real function in the senses that a subset E of R is S(I)-statistically ward compact if any sequence of points in E has an S(I)-statistically quasi Cauchy subsequence, and a real function is S(I)-statistically ward continuous if it preserves S(I)-statistically quasi-Cauchy sequences where a sequence (x(k)) is called to be S(I)-statistically quasi-Cauchy when (Delta x(k)) is S(I)-statistically convergent to 0. We obtain results related to S(I)-statistically ward continuity, S(I)-statistically ward compactness, N-theta-ward continuity, and slowly oscillating continuity. | en_US |
dc.description.sponsorship | Inst Math & Math Modeling, Al Farabi Kazakh Natl Univ, L N Gumilyov Eurasian Natl Univ | en_US |
dc.identifier.doi | 10.1063/1.4959671 | |
dc.identifier.isbn | 978-0-7354-1417-4 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.scopus | 2-s2.0-85000774266 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://dx.doi.org/10.1063/1.4959671 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/8961 | |
dc.identifier.volume | 1759 | en_US |
dc.identifier.wos | WOS:000383223000054 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.publisher | AMER INST PHYSICS | en_US |
dc.relation.ispartof | INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016) | en_US |
dc.relation.isversionof | AIP Conference Proceedings | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | KY06007 | |
dc.subject | Sequences | en_US |
dc.subject | Ideal convergence | en_US |
dc.subject | Compactness | en_US |
dc.subject | Continuity | en_US |
dc.title | Ideal statistically quasi Cauchy sequences | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |