On the rigidity part of Schwarz Lemma at the boundary

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We consider the rigidity part of Schwarz Lemma. Let f be a holomorphic function in the unit disc D and |?f(z)| < 1 for |z| < 1. We generalize rigidity of holomorphic function and provide sufficient conditions on the local behaviour of f near a finite set of boundary points that needs f to be a finite Blaschke product. For a different version of the rigidity theorems of D. Burns-S.Krantz and D. Chelst, we present some more general results used the bilogaritmic concave majorants. The strategy of these results relies on a special version of Phragmen-Lindel¨of princible and Harnack inequality

Açıklama

Anahtar Kelimeler

Holomorphic function, Bilogarithmic concave majorant, Harnack inequality, Phragmen-Lindelf princible

Kaynak

International Conference of Mathematical Sciences (ICMS 2019)

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Akyel, T. ve Örnek, B. N. (2019). On the rigidity part of Schwarz Lemma at the boundary. International Conference of Mathematical Sciences (ICMS 2019). s. 60.