On the rigidity part of Schwarz Lemma at the boundary
Küçük Resim Yok
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
We consider the rigidity part of Schwarz Lemma. Let f be a holomorphic function in the unit disc D and |?f(z)| < 1 for |z| < 1. We generalize rigidity of holomorphic function and provide sufficient conditions on the local behaviour of f near a finite set of boundary points that needs f to be a finite Blaschke product. For a different version of the rigidity theorems of D. Burns-S.Krantz and D. Chelst, we present some more general results used the bilogaritmic concave majorants. The strategy of these results relies on a special version of Phragmen-Lindel¨of princible and Harnack inequality
Açıklama
Anahtar Kelimeler
Holomorphic function, Bilogarithmic concave majorant, Harnack inequality, Phragmen-Lindelf princible
Kaynak
International Conference of Mathematical Sciences (ICMS 2019)
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Akyel, T. ve Örnek, B. N. (2019). On the rigidity part of Schwarz Lemma at the boundary. International Conference of Mathematical Sciences (ICMS 2019). s. 60.