On the rigidity part of Schwarz Lemma at the boundary

dc.authorid0000-0001-7109-230Xen_US
dc.authorid0000-0001-6484-2731en_US
dc.contributor.authorAkyel, Tuğba
dc.contributor.authorÖrnek, Bülent Nafi
dc.date.accessioned2024-07-12T20:48:03Z
dc.date.available2024-07-12T20:48:03Z
dc.date.issued2019en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractWe consider the rigidity part of Schwarz Lemma. Let f be a holomorphic function in the unit disc D and |?f(z)| < 1 for |z| < 1. We generalize rigidity of holomorphic function and provide sufficient conditions on the local behaviour of f near a finite set of boundary points that needs f to be a finite Blaschke product. For a different version of the rigidity theorems of D. Burns-S.Krantz and D. Chelst, we present some more general results used the bilogaritmic concave majorants. The strategy of these results relies on a special version of Phragmen-Lindel¨of princible and Harnack inequalityen_US
dc.identifier.citationAkyel, T. ve Örnek, B. N. (2019). On the rigidity part of Schwarz Lemma at the boundary. International Conference of Mathematical Sciences (ICMS 2019). s. 60.en_US
dc.identifier.endpage60en_US
dc.identifier.isbn978-605-2124-29-1
dc.identifier.startpage60en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/2086
dc.language.isoenen_US
dc.publisherMaltepe Üniversitesien_US
dc.relation.ispartofInternational Conference of Mathematical Sciences (ICMS 2019)en_US
dc.relation.publicationcategoryUluslararası Konferans Öğesi - Başka Kurum Yazarıen_US
dc.rightsCC0 1.0 Universal*
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.snmzKY01448
dc.subjectHolomorphic functionen_US
dc.subjectBilogarithmic concave majoranten_US
dc.subjectHarnack inequalityen_US
dc.subjectPhragmen-Lindelf princibleen_US
dc.titleOn the rigidity part of Schwarz Lemma at the boundaryen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar