A Variation on Statistical Ward Continuity
dc.authorid | 0000-0001-7344-5826 | en_US |
dc.contributor.author | Cakalli, Huseyin | |
dc.date.accessioned | 2024-07-12T21:45:21Z | |
dc.date.available | 2024-07-12T21:45:21Z | |
dc.date.issued | 2017 | en_US |
dc.department | Maltepe Üniversitesi | en_US |
dc.description.abstract | A sequence (alpha(k)) of points in R, the set of real numbers, is called rho-statistically convergent to an element l of R if lim (n ->infinity) 1/rho n |{k <= n : |alpha(k)-l| >= epsilon}| = 0 for each epsilon > 0, where rho = (rho n) is a non-decreasing sequence of positive real numbers tending to 8 such that lim sup(n) rho n/n < infinity, Delta rho n = O(1), and Delta alpha(n) = alpha(n+ 1) - alpha(n) for each positive integer n. A real-valued function defined on a subset of R is called rho-statistically ward continuous if it preserves rho-statistical quasi-Cauchy sequences where a sequence (alpha(k)) is defined to be rho-statistically quasi-Cauchy if the sequence (Delta alpha(k)) is rho-statistically convergent to 0. We obtain results related to rho-statistical ward continuity, rho-statistical ward compactness, ward continuity, continuity, and uniform continuity. It turns out that the set of uniformly continuous functions coincides with the set of rho-statistically ward continuous functions not only on a bounded subset of R, but also on an interval. | en_US |
dc.identifier.doi | 10.1007/s40840-015-0195-0 | |
dc.identifier.endpage | 1710 | en_US |
dc.identifier.issn | 0126-6705 | |
dc.identifier.issn | 2180-4206 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85031773200 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1701 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1007/s40840-015-0195-0 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/7826 | |
dc.identifier.volume | 40 | en_US |
dc.identifier.wos | WOS:000412926000019 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Cakalli, Huseyin | |
dc.language.iso | en | en_US |
dc.publisher | MALAYSIAN MATHEMATICAL SCIENCES SOC | en_US |
dc.relation.ispartof | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | KY00457 | |
dc.subject | Summability | en_US |
dc.subject | Statistical convergent sequences | en_US |
dc.subject | Quasi-Cauchy sequences | en_US |
dc.subject | Boundedness | en_US |
dc.subject | Uniform continuity | en_US |
dc.title | A Variation on Statistical Ward Continuity | en_US |
dc.type | Article | |
dspace.entity.type | Publication |