N-theta-Ward Continuity

dc.authorid0000-0001-7344-5826en_US
dc.contributor.authorCakalli, Huseyin
dc.date.accessioned2024-07-12T21:44:11Z
dc.date.available2024-07-12T21:44:11Z
dc.date.issued2012en_US
dc.departmentMaltepe Üniversitesien_US
dc.description.abstractA function f is continuous if and only if f preserves convergent sequences; that is, (f(alpha(n))) is a convergent sequence whenever (alpha(n)) is convergent. The concept of N-theta-ward continuity is defined in the sense that a function f is N-theta-ward continuous if it preserves N-theta-quasi-Cauchy sequences; that is, (f(alpha(n))) is an N-theta-quasi-Cauchy sequence whenever (alpha(n)) is N-theta-quasi-Cauchy. A sequence (alpha(k)) of points in R, the set of real numbers, is N-theta-quasi-Cauchy if lim(r ->infinity) (1/h(r)) Sigma(k is an element of Ir) vertical bar Delta alpha(k)vertical bar = 0, where Delta alpha(k) = alpha(k+1) - alpha(k), I-r = (k(r-1), k(r)], and theta = (k(r)) is a lacunary sequence, that is, an increasing sequence of positive integers such that k(0) = 0 and h(r) : k(r) - k(r-1) -> infinity. A new type compactness, namely, N-theta-ward compactness, is also, defined and some new results related to this kind of compactness are obtained.en_US
dc.identifier.doi10.1155/2012/680456
dc.identifier.issn1085-3375
dc.identifier.issn1687-0409
dc.identifier.scopus2-s2.0-84863653282en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.urihttps://dx.doi.org/10.1155/2012/680456
dc.identifier.urihttps://hdl.handle.net/20.500.12415/7691
dc.identifier.wosWOS:000305612400001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorCakalli, Huseyin
dc.language.isoenen_US
dc.publisherHINDAWI LTDen_US
dc.relation.ispartofABSTRACT AND APPLIED ANALYSISen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKY00016
dc.titleN-theta-Ward Continuityen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar