Prediction of Arrhythmia with Machine Learning Algorithms

dc.authoridVarol, Asaf/0000-0003-1606-4079en_US
dc.authoridGürsoy, GUNES/0000-0003-3716-0334en_US
dc.contributor.authorGürsoy, Güneş
dc.contributor.authorVarol, Asaf
dc.date.accessioned2024-07-12T21:40:37Z
dc.date.available2024-07-12T21:40:37Z
dc.date.issued2021en_US
dc.department[Belirlenecek]en_US
dc.description9th International Symposium on Digital Forensics and Security (ISDFS) -- JUN 28-29, 2021 -- Fırat Univ, Elazig, TURKEYen_US
dc.description.abstractThe present study uses the age, sex, diabetes mellitus, and arrhythmia data of patients from the datasets presented in an existing study to predict arrhythmia with machine learning algorithms, K-Nearest Neighbors (KNN), and Naive Bayes methods. The outputs are schematically presented, and the conclusions related to the Bayes theorem and KNN algorithms are compared. In the case of increasing the value of neighboring k in the KNN method, it is seen that the accuracy rate approaches the result obtained from the Naive Bayes method.en_US
dc.description.sponsorshipIEEE Turkey Sect,Maltepe Univ,Sam Houston State Univ,Gazi Univ,San Diego State Univ,Arab Open Univ,Hacettepe Univ,Polytechnic Inst Cavado & Ave,Balikesir Univ,Ondokuz Mayis Univ,Assoc Software & Cyber Secur Turkey,Informat Assoc Turkey,Recep Tayyip Erdoğan Univ,Singidunum Univ,TELUQ Univ,Yıldız Teknik Univen_US
dc.identifier.doi10.1109/ISDFS52919.2021.9486383
dc.identifier.isbn978-1-6654-4481-1
dc.identifier.scopus2-s2.0-85114698521en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/ISDFS52919.2021.9486383
dc.identifier.urihttps://hdl.handle.net/20.500.12415/7395
dc.identifier.wosWOS:000844418700040en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof9th International Symposium on Digital Forensics And Security (Isdfs'21)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKY08736
dc.subjectArrhythmiaen_US
dc.subjectDiabetes Mellitusen_US
dc.subjectBayes Theoremen_US
dc.subjectK-Nearest Neighborsen_US
dc.titlePrediction of Arrhythmia with Machine Learning Algorithmsen_US
dc.typeConference Object
dspace.entity.typePublication

Dosyalar