A NEW TYPE CONTINUITY FOR REAL FUNCTIONS

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

UNIV PRISHTINES

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

A real valued function f de fined on a subset of R is delta(2)-ward continuous if lim(n ->infinity) Delta(3)f(x(n)) = 0 whenever lim(n ->infinity) Delta(3)x(n) = 0, where Delta(3) z(n) = z(n+3) - 3z(n+2) + 3z(n+1) - z(n) for each positive integer n, R denotes the set of real numbers, and a subset E of R is delta(2)-ward compact if any sequence of points in E has a delta(2)-quasi Cauchy subsequence where a sequence (x(n)) is delta(2)-quasi Cauchy if lim(n ->infinity) Delta(3) z(n)=0. It turns out that the uniform limit process preserves this kind of continuity, and the set of ffi 2 - ward continuous functions is a closed subset of the set of continuous functions.

Açıklama

Anahtar Kelimeler

Summability, sequences, real functions, continuity

Kaynak

JOURNAL OF MATHEMATICAL ANALYSIS

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

7

Sayı

6

Künye