A NEW TYPE CONTINUITY FOR REAL FUNCTIONS

dc.authorid0000-0001-7344-5826en_US
dc.contributor.authorBraha, Naim L.
dc.contributor.authorCakalli, Huseyin
dc.date.accessioned2024-07-12T21:50:55Z
dc.date.available2024-07-12T21:50:55Z
dc.date.issued2016en_US
dc.departmentMaltepe Üniversitesien_US
dc.description.abstractA real valued function f de fined on a subset of R is delta(2)-ward continuous if lim(n ->infinity) Delta(3)f(x(n)) = 0 whenever lim(n ->infinity) Delta(3)x(n) = 0, where Delta(3) z(n) = z(n+3) - 3z(n+2) + 3z(n+1) - z(n) for each positive integer n, R denotes the set of real numbers, and a subset E of R is delta(2)-ward compact if any sequence of points in E has a delta(2)-quasi Cauchy subsequence where a sequence (x(n)) is delta(2)-quasi Cauchy if lim(n ->infinity) Delta(3) z(n)=0. It turns out that the uniform limit process preserves this kind of continuity, and the set of ffi 2 - ward continuous functions is a closed subset of the set of continuous functions.en_US
dc.identifier.endpage76en_US
dc.identifier.issn2217-3412
dc.identifier.issue6en_US
dc.identifier.startpage68en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12415/8222
dc.identifier.volume7en_US
dc.identifier.wosWOS:000394524000005en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Science
dc.language.isoenen_US
dc.publisherUNIV PRISHTINESen_US
dc.relation.ispartofJOURNAL OF MATHEMATICAL ANALYSISen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKY01964
dc.subjectSummabilityen_US
dc.subjectsequencesen_US
dc.subjectreal functionsen_US
dc.subjectcontinuityen_US
dc.titleA NEW TYPE CONTINUITY FOR REAL FUNCTIONSen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar