A NEW TYPE CONTINUITY FOR REAL FUNCTIONS
dc.authorid | 0000-0001-7344-5826 | en_US |
dc.contributor.author | Braha, Naim L. | |
dc.contributor.author | Cakalli, Huseyin | |
dc.date.accessioned | 2024-07-12T21:50:55Z | |
dc.date.available | 2024-07-12T21:50:55Z | |
dc.date.issued | 2016 | en_US |
dc.department | Maltepe Üniversitesi | en_US |
dc.description.abstract | A real valued function f de fined on a subset of R is delta(2)-ward continuous if lim(n ->infinity) Delta(3)f(x(n)) = 0 whenever lim(n ->infinity) Delta(3)x(n) = 0, where Delta(3) z(n) = z(n+3) - 3z(n+2) + 3z(n+1) - z(n) for each positive integer n, R denotes the set of real numbers, and a subset E of R is delta(2)-ward compact if any sequence of points in E has a delta(2)-quasi Cauchy subsequence where a sequence (x(n)) is delta(2)-quasi Cauchy if lim(n ->infinity) Delta(3) z(n)=0. It turns out that the uniform limit process preserves this kind of continuity, and the set of ffi 2 - ward continuous functions is a closed subset of the set of continuous functions. | en_US |
dc.identifier.endpage | 76 | en_US |
dc.identifier.issn | 2217-3412 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.startpage | 68 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/8222 | |
dc.identifier.volume | 7 | en_US |
dc.identifier.wos | WOS:000394524000005 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | |
dc.language.iso | en | en_US |
dc.publisher | UNIV PRISHTINES | en_US |
dc.relation.ispartof | JOURNAL OF MATHEMATICAL ANALYSIS | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | KY01964 | |
dc.subject | Summability | en_US |
dc.subject | sequences | en_US |
dc.subject | real functions | en_US |
dc.subject | continuity | en_US |
dc.title | A NEW TYPE CONTINUITY FOR REAL FUNCTIONS | en_US |
dc.type | Article | |
dspace.entity.type | Publication |