Quasi-permutation representations of the borel and maximal parabolic subgroups of G2(2n )

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maltepe Üniversitesi

Erişim Hakkı

CC0 1.0 Universal
info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace.Thus every permutation matrix over C is a quasi-permutation matrix. For a finite group G the minimal degree of a faithful representation of G by quasi-permutation matrices over the complex numbers is denoted by c(G) , and r(G) denotes the minimal degree of a faithful rational valued complex character of G. In this paper c(G) and r(G) are calculated for the Borel and maximal parabolic subgroups of G2(2n).

Açıklama

Anahtar Kelimeler

Kaynak

International Conference of Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Ghorbany, M. (2009). Quasi-permutation representations of the borel and maximal parabolic subgroups of G2(2n ). Maltepe Üniversitesi. s. 268.