Quasi-permutation representations of the borel and maximal parabolic subgroups of G2(2n )
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maltepe Üniversitesi
Erişim Hakkı
CC0 1.0 Universal
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace.Thus every permutation matrix over C is a quasi-permutation matrix. For a finite group G the minimal degree of a faithful representation of G by quasi-permutation matrices over the complex numbers is denoted by c(G) , and r(G) denotes the minimal degree of a faithful rational valued complex character of G. In this paper c(G) and r(G) are calculated for the Borel and maximal parabolic subgroups of G2(2n).
Açıklama
Anahtar Kelimeler
Kaynak
International Conference of Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Ghorbany, M. (2009). Quasi-permutation representations of the borel and maximal parabolic subgroups of G2(2n ). Maltepe Üniversitesi. s. 268.