Quasi-permutation representations of the borel and maximal parabolic subgroups of G2(2n )
dc.contributor.author | Ghorbany, Maryam | |
dc.date.accessioned | 2024-07-12T20:50:19Z | |
dc.date.available | 2024-07-12T20:50:19Z | |
dc.date.issued | 2009 | en_US |
dc.department | Fakülteler, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace.Thus every permutation matrix over C is a quasi-permutation matrix. For a finite group G the minimal degree of a faithful representation of G by quasi-permutation matrices over the complex numbers is denoted by c(G) , and r(G) denotes the minimal degree of a faithful rational valued complex character of G. In this paper c(G) and r(G) are calculated for the Borel and maximal parabolic subgroups of G2(2n). | en_US |
dc.identifier.citation | Ghorbany, M. (2009). Quasi-permutation representations of the borel and maximal parabolic subgroups of G2(2n ). Maltepe Üniversitesi. s. 268. | en_US |
dc.identifier.endpage | 269 | en_US |
dc.identifier.isbn | 9.78605E+12 | |
dc.identifier.startpage | 268 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/2313 | |
dc.institutionauthor | Ghorbany, Maryam | |
dc.language.iso | en | en_US |
dc.publisher | Maltepe Üniversitesi | en_US |
dc.relation.ispartof | International Conference of Mathematical Sciences | en_US |
dc.relation.publicationcategory | Uluslararası Konferans Öğesi - Başka Kurum Yazarı | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.snmz | KY07678 | |
dc.title | Quasi-permutation representations of the borel and maximal parabolic subgroups of G2(2n ) | en_US |
dc.type | Conference Object | |
dspace.entity.type | Publication |