Sequential definitions of compactness

Küçük Resim Yok

Tarih

2008

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

PERGAMON-ELSEVIER SCIENCE LTD

Erişim Hakkı

info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

A subset F of a topological space is sequentially compact if any sequence x = (x(n)) of points in F has a convergent subsequence whose limit is in F. We say that a subset F of a topological group X is G-sequentially compact if any sequence x = (x(n)) of points in F has a convergent subsequence y such that G(y) is an element of F where G is an additive function from a subgroup of the group of all sequences of points in X. We investigate the impact of changing the definition of convergence of sequences on the structure of sequentially compactness of sets in the sense of G-sequential compactness. Sequential compactness is a special case of this generalization when G = lim. (C) 2007 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

sequences, series, summability, sequential compactness, countable compactness

Kaynak

APPLIED MATHEMATICS LETTERS

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

21

Sayı

6

Künye